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Motivation



Extreme multilabel classification 

Main challenge:

1. Large scale

2. Sparse data

3. Label imbalance

4. Tail labels

To do what?

Design more complicated structure like tree, graph, DNN and etc.
Clustering, dimensionality reduction, sampling methods, embedding…



AnnexML

 Basic Idea:

reproducing the KNN graph of label vectors in the embedding

space to improve both the prediction accuracy and speed of the KNN

classifier.

Steps:

 Learn to partition data points

 Learn embedding

• Nearest neighbor search



Overview of AnnexML Training



Partition Data Points

Construct the KNNG as weak supervision

𝑵𝒀
(𝒊)

= 𝒂𝒓𝒈𝒎𝒂𝒙𝑺:𝑺⊆𝑰, 𝑺 =𝒏,𝒊∉𝑺෍

𝒋∈𝑺

𝒚𝒊
𝑻𝒚𝒋

𝒚𝒊 |𝒚𝒋|

Tips: label imbalance, inverted index

max
𝑤𝑐𝑖

෍

𝑗∈𝑁𝑌
(𝑖)

log 𝜎 𝑤𝑐𝑖
𝑇𝑥𝑗 + ෍

𝑘∈𝑆−

log 𝜎 −𝑤𝑐𝑖
𝑇𝑥𝑘 − 𝜆 𝑤𝑐 1

where c𝑖 = argmax
𝑐

𝑤𝑐𝑖
𝑇𝑥𝑖 is the partition to which the i-th point belongs at this

time step, 𝑆− ⊂ 𝐼

1. to assign the approximate nearest neighbors 𝑵𝒀
(𝒊) to the same partition 𝑐𝑖 to

which the i-th point belongs.

2. the randomly selected points 𝑺− should not be included in this partition

3. to make 𝒘𝒄 sparse

Goal: learn a multi-class classifier



Learning embeddings

How; preserving similarities in the original space and the embedded space.

Embedding: 𝒛𝒊 = 𝑽𝒄𝒙𝒊, find a 𝑽𝒄 for partition c.

𝑹 𝒙𝒊, 𝒚𝒊 ≔ 𝒄𝒐𝒔 𝒛𝒊, 𝒛𝒋 =
𝒛𝒊
𝑻𝒛𝒋

𝒛𝒊 𝒛𝒋
=

𝒙𝒊
𝑻𝑽𝒄

𝑻𝑽𝒄𝒙𝒋

𝑽𝒄𝒙𝒊 ||𝑽𝒄𝒙𝒋||

𝑃 𝑥𝑗 𝑥𝑖 =
exp(𝛾𝑅(𝑥𝑖 , 𝑥𝑗))

exp 𝛾𝑅 𝑥𝑖 , 𝑥𝑗 + σ𝑘∈𝑆𝑐
− exp(𝛾𝑅(𝑥𝑖 , 𝑥𝑘))

where 𝑆𝑐
− ⊂ 𝐼𝑐 is the set of indices randomly selected from data points in the

corresponding partition c.

min
𝑉𝑐

෍

𝑖∈𝐼𝑐

෍

𝑗∈𝑁𝑌𝑐
(𝑖)

−log 𝑃(𝑥𝑗|𝑥𝑖)

Goal: reconstruct the KNNG of label vectors in the embedding space



Summarization

 AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-
label Classification

1. As fast as tree based methods, with higher accuracy

2. Weak supervised clustering (use k-nn as a weak supervision)

3. Tail labels and core labels, which are more important?

 Limitations

1. Too complex ??



Label Embedding Trees for Large Multi-class Tasks

 Introduction

 Each node has

 Label set

 Classifier of children

 Label Predictors: 𝑭 = {𝒇𝟏, 𝒇𝟐, ⋯ , 𝒇𝒏}

 Label sets: 𝑳 = {𝒍𝟎, 𝒍𝟏, ⋯ , 𝒍𝒏}

How to split the label set(construction) ?
How to learn classifier(optimization) ?



Learning Label Tree Structure

Basic idea: group together labels into the same label set that are likely to

be confused at test time.



Learning Label Tree Structure

Cat Tiger Pen Pencil

Cat 1 0.6 0.1 0.12

Tiger 0.6 1 0.2 0.16

Pen 0.1 0.2 1 0.9

pencil 0.12 0.16 0.9 1

𝑅

𝐼1

𝐿1 𝐿2

𝐼𝑛

𝐿𝑘−1 𝐿𝑘

…

{pencil, pen, cat, tiger}

{pen, pencil} {cat, tiger}

{pen} {pencil} {cat} {tiger}

Recursively

Spectral
clustering

Confusion matrix



Learning Label Tree Structure

𝑅 𝑓𝑡𝑟𝑒𝑒 = 𝐼 𝑓𝑡𝑟𝑒𝑒 𝑥 ≠ 𝑦 𝑑𝑃 𝑥, 𝑦

= න max
𝑖∊𝐵 𝑥 ={𝑏1 𝑥 ,𝑏𝐷 𝑥 𝑥 }

𝐼 𝑦 ∉ 𝑙𝑖 𝑑𝑃(𝑥, 𝑦)

Basic form of tree loss: 

Where I is the indicator function, D is the depth in the tree of the 
final for prediction 𝑥

𝑏𝑗 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑐: 𝑏𝑗−1 𝑥 ,𝑐 ∊𝐸 𝑓𝑐 𝑥

If there is at least one misclassification in the path, penalize it.



Learning With Fixed Label Tree

Relaxation 1

෍

𝑗=1

𝑛

𝛾 𝑤𝑗
2
+
1

𝑚
෍

𝑖=1

𝑚

ξ𝑖𝑗 𝑠. 𝑡. ∀𝑖, 𝑗, ൝
𝐶𝑗 𝑦𝑗 𝑓𝑗 𝑥𝑗 ≥ 1 − ξ𝑖𝑗

ξ𝑖𝑗 ≥ 0

𝑅𝑒𝑚𝑝 𝑓𝑡𝑟𝑒𝑒 =
1

𝑚
෍

𝑖=1

𝑚

max
𝑗∊𝐵(𝑥)

𝐼(𝑦𝑖 ∉ 𝑙𝑗) ≤
1

𝑚
෍

𝑖=1

𝑚

෍

𝑗=1

𝑛

𝐼 𝑠𝑔𝑛 𝑓𝑗 𝑥𝑖 ≠ 𝐶𝑗 𝑦𝑖

𝑤ℎ𝑒𝑟𝑒 𝐶𝑗 𝑦 = 1 𝑖𝑓 𝑦 ∊ 𝑙𝑗 𝑎𝑛𝑑 − 1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

exmaple

node

Goal: minimize the tree loss over the variables F

Given training data { 𝒙𝒊, 𝒚𝒊 , 𝒊 = 𝟏,⋯ ,𝒎}

Replace indicator function with hinge loss and       𝑓𝑗 𝑥𝑖 = 𝑤𝑖
𝑇𝜙(𝑥)



Learning With Fixed Label Tree

෍

𝑗=1

𝑛

𝛾 𝑤𝑗
2
+
1

𝑚
෍

𝑖=1

𝑚

ξ𝑖𝑗 𝑠. 𝑡. ∀𝑖, 𝑗, ൝
𝐶𝑗 𝑦𝑗 𝑓𝑗 𝑥𝑗 ≥ 1 − ξ𝑖𝑗

ξ𝑖𝑗 ≥ 0

𝛾෍

𝑗=1

𝑛

𝑤𝑗
2
+
1

𝑚
෍

𝑖=1

𝑚

𝜉𝑖

𝑠. 𝑡. ቊ
𝑓𝑟 𝑥𝑖 ≥ 𝑓𝑠 𝑥𝑖 − 𝜉𝑖 , ∀𝑟, 𝑠: 𝑦𝑖 ∊ 𝑙𝑟∧ 𝑦𝑖 ∉ 𝑙𝑠 ∧ (∃𝑝: (𝑝, 𝑟) ∊ 𝐸 ∧ (𝑝, 𝑠) ∊ 𝐸)

ξ𝑖 ≥ 0

Relaxation 2



Label Embedding

• 𝑑𝑒 < 𝑑

• For dimension reduction, computation time is reduced.

Feature 𝑥 Embedding

W
𝑑 ⨯ 1 𝑑𝑒 ⨯ 1

label 𝜙(𝑦)

V
𝑘 ⨯ 1

0
0
0
0
0
0
1
0
0
0



Label Embedding Without Tree

• Non-Convex Joint Optimization

Goal:

𝑓𝑒𝑚𝑏𝑒𝑑 = argmax
𝑊,𝑉

S(𝑊𝑥, 𝑉𝜙(𝑦))

𝜙 𝑦 is a k-dimensional vector with a 1 in the y-th position and 0 otherwise.

How to learn 𝐖,𝐕 ?

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛾 𝑊 𝐹𝑅𝑂 +
1

𝑚
෍

𝑖=1

𝑚

𝜉𝑖

𝑠. 𝑡.
𝑊𝑥𝑖

𝑇𝑉𝜙 𝑖 ≥ 𝑊𝑥𝑖
𝑇𝑉𝜙 𝑗 − 𝜉𝑖 , ∀𝑗 ≠ 𝑖

𝜉𝑖 ≥ 0, 𝑖 = 1,… ,𝑚

𝑉𝑖 ≤ 1



Label Embedding Without Tree

• Sequence of Convex Problems

Goal:

𝑓𝑒𝑚𝑏𝑒𝑑 = argmax
𝑊,𝑉

S(𝑊𝑥, 𝑉𝜙(𝑦))

𝜙 𝑦 is a k-dimensional vector with a 1 in the y-th position and 0 otherwise.

How to learn 𝐖,𝐕 ?

Embedding label 𝜙(𝑦)

··
·⨯

⨯
⨯

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ෍

𝑖,𝑗=1

𝑘

𝐴𝑖𝑗 𝑉𝑖 − 𝑉𝑗
2

V s. t .
𝐴 =

1
2

ҧ𝐶 + ҧ𝐶T

𝑉𝑇𝐷𝑉 = 𝐼 & 𝐷𝑖𝑖 = σ𝑗𝐴𝑖𝑗

A is the symmetrized confusion 
matrix. The same steps of learn-
ing a tree structure.

Learning V
Laplacian Eigenmaps 



• Sequence of Convex Problems

Label Embedding Without Tree

Goal:

𝑓𝑒𝑚𝑏𝑒𝑑 = argmax
𝑊,𝑉

S(𝑊𝑥, 𝑉𝜙(𝑦))

𝜙 𝑦 is a k-dimensional vector with a 1 in the y-th position and 0 otherwise.

How to learn 𝐖,𝐕 ?

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛾 𝑊 𝐹𝑅𝑂 +
1

𝑚
෍

𝑖=1

𝑚

𝜉𝑖

𝑠. 𝑡.
𝑊𝑥𝑖 − 𝑉𝜙 𝑖 2 ≤ 𝑊𝑥𝑖 − 𝑉𝜙 𝑗 2 + 𝜉𝑖 , ∀𝑗 ≠ 𝑖

𝜉𝑖 ≥ 0, 𝑖 = 1, … ,𝑚

Learning W



• Sequence of Convex Problems

Learning Label Embedding Trees

Goal:

𝑓𝑒𝑚𝑏𝑒𝑑 = argmax
𝑊,𝑉

S(𝑊𝑥, 𝑉𝜙(𝑦))

𝜙 𝑦 is a k-dimensional vector with a 1 in the y-th position and 0 otherwise.

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝛾 𝑊 𝐹𝑅𝑂 +
1

𝑚
෍

𝑖=1

𝑚

𝜉𝑖

𝑠. 𝑡.

𝑊𝑥𝑖 − 𝑉𝜙 𝑟 2 ≥ 𝑊𝑥𝑖 − 𝑉𝜙 𝑠 2 − 𝜉𝑖 ,
∀ 𝑟, 𝑠: 𝑦𝑖 ∈ 𝑙𝑟 ∧ 𝑦𝑖 ∉ 𝑙𝑠 ∧ (∃𝑝: (𝑝, 𝑟) ∊ 𝐸 ∧ (𝑝, 𝑠) ∊ 𝐸)

𝑉𝑖 ≤ 1, 𝜉𝑖 ≥ 0, 𝑖 = 1, … ,𝑚



Summarization

 Label Embedding Trees for Large Multi-class Tasks【NIPS’10】

 Limitations

1. Learning one-vs-all classifier is costly for large-scale

2. Disjoint partition of classes does not allow overlap

3. Tree structure may be unbalanced

 Goal

1. Jointly learns the splits and classifier weights

2. Allowing overlapping of class labels among children

3. Explicitly modeling the accuracy and efficiency trade-off

 See: Fast and Balanced: Efficient Label Tree Learning for Large Scale 

Object Recognition [NIPS’11]



Less is More…

Thank you 





Nonlinear dimensionality reduction 

Target: to find a small neighborhood around each data point and 
connects each point to its neighbors with appropriate weights.



Nonlinear manifolds

【Ehsan, SIAM12】

 Mappings are nonlinear

 Tasks:

 Cluster data into manifolds

 Find low-dimensional representations



Nonlinear dimensionality reduction 

 Nonlinear dimension reduction

1. Build nearest neighbor graph

2. Learn weights

3. Find embedding from weights

 LLE [Roweis, Science’00], LE [Belkin, NIPS’02], ISOMAP 

[Tenenbaum, Science’00], SNE [Hinton, NIPS’03], T-SNE 

[Maaten, JMLR’08]

• Same in the first step

• Different in the second step



Sparse manifold clustering and embedding

E. Elhamifar and R. Vidal, Sparse Manifold Clustering and Embedding, NIPS’11

 Method (SMCE)

1. Learn the neighborhood graph and its

weights

1. Find embedding from weights

 Weights encode information for both clustering and embedding

1. Deal with manifolds close to each other

2. Deal with manifolds of different dimensions

• Automatically pick the right number of neighbors



Sparse manifold clustering and embedding

 𝑀𝑙 of intrinsic dimension 𝑑𝑙

 Affine span of 𝑑𝑙 + 1 points from 𝑀𝑙 is close to 𝑦𝑙

 Optimization program

min 𝑞𝑖 ⊙ 𝑐𝑖 1 s. t.
𝑦1−𝑦𝑖

𝑦1−𝑦𝑖 2
⋯

𝑦𝑁−𝑦𝑖

𝑦𝑁−𝑦𝑖 2
𝑐𝑖 ≈ 0, 𝟏T𝑐𝑖 = 1

few close points                span affine subspace

• Proximity inducing vector: 𝑞𝑖 =
𝑦1−𝑦𝑖 2

σ𝑡≠𝑖 𝑦𝑡−𝑦𝑖 2
⋯

𝑦𝑁−𝑦𝑖 2

σ𝑡≠𝑖 𝑦𝑡−𝑦𝑖 2

T



Sparse manifold clustering and embedding

1. Two manifolds marked by blue and red.
2. For the blue one on the left, calculate equation above.
3. r* -> r+, b* -> b+

.
𝑦1−𝑦𝑖

𝑦1−𝑦𝑖 2
⋯

𝑦𝑁−𝑦𝑖

𝑦𝑁−𝑦𝑖 2
𝑐𝑖 ≈ 0, 𝟏T𝑐𝑖 = 1 span affine subspace



Sparse manifold clustering and embedding

𝑞𝑖 =
𝑦1 − 𝑦𝑖 2

σ𝑡≠𝑖 𝑦𝑡 − 𝑦𝑖 2
⋯

𝑦𝑁 − 𝑦𝑖 2

σ𝑡≠𝑖 𝑦𝑡 − 𝑦𝑖 2

T few close points 

Original:

Y𝑖 = [𝑦1 − 𝑦𝑖 ⋯ 𝑦𝑁 − 𝑦𝑖]

Y𝑖𝑐𝑖 2 ≤ 𝜖, 𝑎𝑛𝑑 𝟏T𝑐𝑖 = 1

Target:
The elements of 𝑞𝑖 should be chosen such that the points are close to 

𝑦𝑖 have smaller weights, allowing the  assignment of nonzero coefficients (𝑐𝑖𝑗 ) 
to them. 

After obtaining 𝐶 = 𝑐𝑖𝑗 , we can use it to do clustering, dimensionality 
reduction.



Sparse manifold clustering and embedding

Exploited the self-expressiveness property of the data for

• Clustering subspaces

• Clustering and embedding of nonlinear manifolds

→ AnnexML, an extreme multilabel classification algorithm


